<table>
<thead>
<tr>
<th>Poster #</th>
<th>Author</th>
<th>Title</th>
<th>Alt. Presenter</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>Thomas Brown</td>
<td>Improved performance of the CAMS/LLNL high-intensity Cs-sputter negative ion source: ion trajectory modeling and modified electrode geometries</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-2</td>
<td>Bruce Buchholz</td>
<td>Measuring sub-micron-size fractionated particulate matter on aluminum impactor filters</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-3</td>
<td>Philip Naysmith</td>
<td>(^{14})C AMS measurements at SUERC: improving QA data from the SMV tandem AMS and 250kV SSAMS</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-4</td>
<td>Robert Beverly</td>
<td>The Keck Carbon Cycle AMS Laboratory, University of California Irvine: status report</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-5</td>
<td>Amy Englebrecht</td>
<td>Ultra-small (<30 (\mu)g C) AMS (^{14})C measurements at the CAMS Facility</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-6</td>
<td>Albert Zondervan</td>
<td>XCAMS: extending the potential of low voltage, low detection limit (^{14})C AMS towards (^{10})Be and (^{26})Al with a planned facility at New Zealand's National Isotope Centre</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-7</td>
<td>Lucio Calcagnile</td>
<td>From dating history to decoding paleoclimate: the contribution of AMS and carbon stable analysis</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-8</td>
<td>Hannah Mirabueno</td>
<td>AMS radiocarbon dating for the Irosin ignimbrite and co-ignimbrite ash-fall, southern Luzon, Philippines</td>
<td>Tetsuo Kobayashi</td>
<td>AMS</td>
</tr>
<tr>
<td>P-9</td>
<td>Mark Roberts</td>
<td>A high-performance (^{14})C accelerator mass spectrometry system</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-10</td>
<td>Cameron McIntyre</td>
<td>Development of a gas chromatograph-combustion system for (^{14})C AMS</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-11</td>
<td>Ernst Galutschek</td>
<td>A new gas-accepting negative ion source for (^{14})C detection</td>
<td></td>
<td>AMS</td>
</tr>
<tr>
<td>P-12</td>
<td>RE Taylor</td>
<td>Anomalous (^{14})C ages obtained on 612 BCE human skeletons from ancient Nineveh: alternative explanations</td>
<td>John Southon</td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-13</td>
<td>Markku Oinonen</td>
<td>Archaeological radiocarbon dates for studying the population history in eastern Fennoscandia</td>
<td></td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-14</td>
<td>Mai Takigami</td>
<td>Origin of mummies of Pachacamac, Peru: using radiocarbon dating and dietary analysis</td>
<td></td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-15</td>
<td>Jaimie Lovell</td>
<td>Upland olive domestication in the Chalcolithic period: new (^{14})C determinations from El Khawarjij (Ajlun), Jordan</td>
<td></td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-16</td>
<td>Minoru Yoneda</td>
<td>Radiocarbon dating the "Villa of August" at Somma Vesuviana, Italy</td>
<td></td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-17</td>
<td>Eva Svingor</td>
<td>Vörösmartyasszonyzsiget - a multi-period archaeological site in SW Hungary</td>
<td></td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-18</td>
<td>Mike Church</td>
<td>Dating (\textit{tandnam}) in the Faroe Islands</td>
<td></td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-19</td>
<td>Alana M Rossi</td>
<td>Problems in dating artifact assemblages from open-air sites in Western Australia: Mulka's Cave in context</td>
<td>Esmée Webb</td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-20</td>
<td>Derek Hall</td>
<td>New dating evidence for North Sea trade between England, Scotland, and Norway in the 11th century AD</td>
<td>Gordon Cook</td>
<td>Archaeology</td>
</tr>
<tr>
<td>P-21</td>
<td>Pavel Dolukhanov</td>
<td>The Neolithization of southeastern Europe: new evidence from the East</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-22</td>
<td>Andrei Krivoshapkin</td>
<td>Chronology of the Obi-Rakhmat Grotto (Uzbekistan): results and problems of the Paleolithic key site in Central Asia</td>
<td>Yaroslav Kuzmin</td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-23</td>
<td>Yizhi Zhu</td>
<td>The research of environmental archaeology and (^{14})C chronology in Danjiang, Shaanxi Province, China</td>
<td>Peng Cheng</td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-24</td>
<td>Hirotaka Oda</td>
<td>On the execution ages of Genji narrative scroll and Ban Dainagon narrative scroll by radiocarbon dating of (\textit{kohitsugire}) calligraphies attributed to Asukai Masatsune</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-25</td>
<td>Cheng-Bang An</td>
<td>A case study of the origin and age of agriculture in northern China</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>Poster #</td>
<td>Author</td>
<td>Title</td>
<td>Alt. Presenter</td>
<td>Session</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>P-26</td>
<td>Guanghui Dong</td>
<td>Application of radiocarbon dating to the research of prehistoric disasters and the effects on human migration in Guanting Basin, Qinghai Province, China</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-27</td>
<td>Ganna Zaitseva</td>
<td>Chronological study of the occupation of the Gonur Depe Bronze Age site (Turkmenistan)</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-28</td>
<td>XD Ruan</td>
<td>Measuring the age of an ancient pottery workshop in southwest China</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-29</td>
<td>Mitsuru Okuno</td>
<td>AMS radiocarbon dating of the Tane IV tephra distributed on Tanegashima Island, SW Japan</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-30</td>
<td>Qinglin Guo</td>
<td>Radiocarbon chronology for early caves of Mogao Grottoes, Dunhuang, China</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-31</td>
<td>Tomoko Ohta</td>
<td>Measurement of radionuclides in ancient relics obtained from Matsusaki site and Hirohata shell mound on Pacific site, Japan</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-32</td>
<td>Nancy Beavan Athfield</td>
<td>15th to 17th century jar burials in the Cardamom Mountains, Cambodia: preliminary results</td>
<td></td>
<td>Eurasian Archaeology</td>
</tr>
<tr>
<td>P-33</td>
<td>Nancy Beavan Athfield</td>
<td>Examining ascetic acid treatment of bone carbonate for radiocarbon dating: preliminary results</td>
<td></td>
<td>Bone Chemistry</td>
</tr>
<tr>
<td>P-34</td>
<td>Rachel Wood</td>
<td>Refining the pretreatment background correction of collagen extracted by ultrafiltration at ORAU</td>
<td></td>
<td>Bone Chemistry</td>
</tr>
<tr>
<td>P-35</td>
<td>Philip Naysmith</td>
<td>Effect of temperature on the δ¹³C values of carbon extracted from cremated bone samples</td>
<td></td>
<td>Bone Chemistry</td>
</tr>
<tr>
<td>P-36</td>
<td>Jennifer Tripp</td>
<td>A nondestructive prescreening method for bone collagen content using micro-computed tomography</td>
<td></td>
<td>Bone Chemistry</td>
</tr>
<tr>
<td>P-37</td>
<td>Alexander Cherkinsky</td>
<td>Radiocarbon age of bone fractions from Armenian prehistoric sites</td>
<td></td>
<td>Bone Chemistry</td>
</tr>
<tr>
<td>P-38</td>
<td>Yuichi Naito</td>
<td>A new method for correcting the marine reservoir effect on radiocarbon age of human remains based on nitrogen isotopic compositions of individual amino acids in collagen</td>
<td>Minoru Yoneda</td>
<td>Bone Chemistry</td>
</tr>
<tr>
<td>P-39</td>
<td>Bettina Schulz Paulsson</td>
<td>Scandinavian models: radiocarbon dates from Scandinavian passage graves and what they tell us about the Neolithic society</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-40</td>
<td>Lawrence H Barfield</td>
<td>A wiggle-matched date for the Copper Age cemetery at Manerba del Garda, northern Italy</td>
<td>Erto Valzolgher</td>
<td>Calibration</td>
</tr>
<tr>
<td>P-41</td>
<td>Andrew Millard</td>
<td>Dating a late Neolithic enclosure at Marne Barracks, North Yorkshire, England</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-42</td>
<td>Andrew Millard</td>
<td>What does it mean to sum the probabilities of dates?</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-43</td>
<td>Seren Griffiths</td>
<td>A serial problem: dating the introduction of cereals to Scotland and northern England</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-44</td>
<td>Gordon Schlolaut</td>
<td>Lake Suigetsu – 2006: a novel approach to varve counting; combining thin section microscopy and microXRF and radiography</td>
<td>C. Bronk Ramsey</td>
<td>Calibration</td>
</tr>
<tr>
<td>P-45</td>
<td>Elisa J Kagan</td>
<td>High-resolution inter-basin chronology of Holocene paleoseismic events at the Dead Sea Basin by a Bayesian radiocarbon deposition model</td>
<td>C. Bronk Ramsey</td>
<td>Calibration</td>
</tr>
<tr>
<td>P-46</td>
<td>Carolin Lubos</td>
<td>A first tell north of the Alps? Results from a multilayered settlement mound at Niederröblingen (Germany)</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-47</td>
<td>Lucio Calcagnile</td>
<td>Application of Bayesian radiocarbon data analysis for the chronostratigraphic sequence of Madonna Cave (Calabria, southern Italy)</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-48</td>
<td>Marie Sydoff</td>
<td>The production of an AMS ¹⁴C sucrose standard for the calibration and quality control of high-activity measurements</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>Poster #</td>
<td>Author</td>
<td>Title</td>
<td>Alt. Presenter</td>
<td>Session</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>P-49</td>
<td>Laura Beramendi-Orosco</td>
<td>Modern radiocarbon levels for northeastern Mexico derived from tree rings: a comparison with Northern Hemisphere zones 2 and 3 curves</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-50</td>
<td>Mitsuru Okuno</td>
<td>14C wiggle-matching of the Haruna Futatsudake pumice (HR-FP), central Japan</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-51</td>
<td>Shinya Yatsuzuka</td>
<td>14C wiggle-matching of the 10th century eruption of Baitoushan Volcano (China/North Korea)</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-52</td>
<td>Takayuki Omori</td>
<td>Anatolian tree rings for the Early Iron Age from the Kaman-Kalehöyük site, Turkey: reconsideration of Anatolian regional 14C offsets</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-53</td>
<td>Hirohisa Sakurai</td>
<td>14C age measurements of single-year tree rings for two old woods at about 22000 and about 46000 14C yr BP</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-54</td>
<td>Hirohisa Sakurai</td>
<td>Bomb 14C data profiles from 1950 to 2000 in Japanese tree rings from the Pacific Ocean side and the Japan Sea side</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-55</td>
<td>Hiromasa Ozaki</td>
<td>Radiocarbon dates of Japanese tree rings for 1060 BC–AD 400</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-56</td>
<td>Andreas Scharf</td>
<td>Extending tree-ring chronologies and settlement history of High Asia by radiocarbon dating of wood samples from historic monasteries and temples in Tibet and Nepal</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-57</td>
<td>Xiaomei Xu</td>
<td>Is the consensus value of ANU sucrose (C-6) too high?</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-58</td>
<td>Susana Gonzalez</td>
<td>Radiocarbon calibration from 22 to 30 kyr BP using 238U-232Th dating of a stalagmite from cave 2-9, San La Province, Vietnam</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-59</td>
<td>Gianluca Quarta</td>
<td>Wiggle-match dating of wooden samples from Iron Age sites in northern Italy</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-60</td>
<td>Danuta Michczyńska</td>
<td>Chronostratigraphic subdivision of the Late Glacial and the Holocene in Alaska</td>
<td>Irka Hajdas</td>
<td>Calibration</td>
</tr>
<tr>
<td>P-61</td>
<td>Valentin Dergachev</td>
<td>Cosmogenic isotopes, long-term solar activity, and 20th century global warming</td>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td>P-62</td>
<td>Seiya Nagao</td>
<td>Spatial distribution of Δ^{14}C values of surface sediments off Saru River in Hokkaido, Japan</td>
<td></td>
<td>Freshwater/Groundwater</td>
</tr>
<tr>
<td>P-63</td>
<td>Ai-Feng Zhou</td>
<td>Apparent radiocarbon age in Lake Sogan, northwest China</td>
<td></td>
<td>Freshwater/Groundwater</td>
</tr>
<tr>
<td>P-64</td>
<td>Akiko Goto</td>
<td>14C dating of buried trees from the landslide-deposit-formed, landslide-dammed lake at Toyama River, Nagano Prefecture, central Japan</td>
<td></td>
<td>Freshwater/Groundwater</td>
</tr>
<tr>
<td>P-65</td>
<td>Helen McKinnon</td>
<td>An investigation into the hardwater effect and its influence on reliable estuarine radiocarbon determinations from Aotea Harbour, New Zealand</td>
<td></td>
<td>Freshwater/Groundwater</td>
</tr>
<tr>
<td>P-66</td>
<td>Pavel Povinec</td>
<td>Spatial variability of 14C, 813C and 818O in groundwater of Slovakia</td>
<td></td>
<td>Freshwater/Groundwater</td>
</tr>
<tr>
<td>P-67</td>
<td>Toshio Nakamura</td>
<td>Carbon reservoir effect of freshwater in Lake Pumayum Co on the southeastern Tibetan Plateau</td>
<td></td>
<td>Freshwater/Groundwater</td>
</tr>
<tr>
<td>P-68</td>
<td>Kelly James</td>
<td>Assessing the potential for radiocarbon dating of cosmoid scales of Australian lungfish (Neoceratodus forsteri)</td>
<td></td>
<td>Freshwater/Groundwater</td>
</tr>
<tr>
<td>P-69</td>
<td>Andrea Burke</td>
<td>Radiocarbon age surveys of Southern Ocean deep-sea corals</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-70</td>
<td>Kristen Munk</td>
<td>Refining the bomb radiocarbon profile in the North Pacific Ocean using fish otoliths</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-71</td>
<td>Maurice Ndeye</td>
<td>Marine reservoir ages in northern Senegal and Mauritania coastal waters</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-72</td>
<td>Michel Fontugne</td>
<td>Variations of radiocarbon reservoir ages of Black Sea waters and sedimentary organic carbon during anoxic periods: influence of photosynthetic versus chemoautotrophic production</td>
<td>N. Tisnérat-Laborde</td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-73</td>
<td>Rebecca Norman</td>
<td>A radiocarbon method for determining deep-sea sponge growth rates</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-74</td>
<td>Sue O’Connor</td>
<td>Marine reservoir variability in the Kimberley region, western Australia</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>Poster #</td>
<td>Author</td>
<td>Title</td>
<td>Alt. Presenter</td>
<td>Session</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>P-75</td>
<td>Stewart Fallon</td>
<td>Developing robust chronologies of Aboriginal occupation from shell middens along the Kimberley coast of Australia</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-76</td>
<td>Kevin Jones</td>
<td>Over 500 14C yr of marine reservoir age variation in a Mesodesma donacium shell from southern Peru</td>
<td>Greg Hodgins</td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-77</td>
<td>Kunio Yoshida</td>
<td>Pre-bomb marine reservoir ages in the northwestern Pacific</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-78</td>
<td>Masayo Minami</td>
<td>A weathering assessment of calcareous sandstones using radiocarbon</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-79</td>
<td>James Scourse</td>
<td>An annually-resolved marine radiocarbon bomb-pulse compilation from the temperate North Atlantic using long-lived mollusks (Arctica islandica)</td>
<td>Jan Heinemeier</td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-80</td>
<td>William J Jenkins</td>
<td>The passage of the bomb radiocarbon pulse into the Pacific Ocean</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-81</td>
<td>Bruce McFadgen</td>
<td>ΔR in the Southern Ocean</td>
<td>Christine Prior</td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-82</td>
<td>Ellen Druffel</td>
<td>Daily variability of dissolved inorganic radiocarbon in surface waters at a time-series site in the northeast Pacific Ocean</td>
<td></td>
<td>Marine Studies</td>
</tr>
<tr>
<td>P-83</td>
<td>Ellen Druffel</td>
<td>Compound-specific radiocarbon analyses of phospholipid fatty acids and alkanes in oceanic sediments using preparative capillary gas chromatographic and AMS techniques</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-84</td>
<td>Sheila Griffin</td>
<td>An alternative method of diluting dissolved organic carbon (DOC) high concentrate samples for 14C analysis</td>
<td>Ellen Druffel</td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-85</td>
<td>Christine Prior</td>
<td>Radiocarbon determination of the age of fossil sinter deposits</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-86</td>
<td>Guaciara dos Santos</td>
<td>Blank assessment for ultra-small samples: extraction chemistry versus AMS</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-87</td>
<td>Takumi Kubota</td>
<td>Measurement of 14C in quartz samples from northern Abukama region, Japan, using natural graphite as precursor of carrier</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-88</td>
<td>Kristina Stenström</td>
<td>The use of human hair and nails as bioindicators of occupational 14C contamination</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-89</td>
<td>Anita Quiles</td>
<td>New projects in the 14C measurement laboratory LMC14 in Saclay, France</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-90</td>
<td>Giuseppe Magnani</td>
<td>Improvements in the benzene synthesis at the ENEA Radiocarbon Laboratory</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-91</td>
<td>Simon Fahrni</td>
<td>Preparative 2D-chromatography method for compound-specific radiocarbon analysis of aerosol components</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-92</td>
<td>Richard Staff</td>
<td>Method development for very small mass samples at the Oxford Radiocarbon Accelerator Unit</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-93</td>
<td>Adrian Patrut</td>
<td>Age and growth rate dynamics of an old African baobab determined by radiocarbon dating</td>
<td>Karl von Reden</td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-94</td>
<td>Adrian Patrut</td>
<td>Fire history of a giant African baobab evinced by radiocarbon dating: comparative calibration with Northern vs. Southern Hemisphere data sets</td>
<td>Karl von Reden</td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-95</td>
<td>Ann McNichol</td>
<td>Expanding access to radiocarbon analyses in the ocean sciences: improvements at NOSAMS</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-96</td>
<td>Irina Vagner</td>
<td>Using direct absorption method and liquid scintillation counting for 14C measurements in organic sediments</td>
<td>Ioan Stefanescu</td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>P-98</td>
<td>Masao Uchida</td>
<td>Evidence of heterotrophic microbial decomposition of soil ancient carbon, Svalbard, Arctic Norway: insights from compound-specific radiocarbon analysis</td>
<td></td>
<td>Methods/Developments</td>
</tr>
<tr>
<td>Poster #</td>
<td>Author</td>
<td>Title</td>
<td>Alt. Presenter</td>
<td>Session</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
<td>--</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>P-99</td>
<td>Geraldine Jacobsen</td>
<td>ANSTO AMS Facility sample processing and target preparation: an update</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-100</td>
<td>Johan Genberg</td>
<td>Measurement of 14C in carbonaceous aerosol for source apportionment at Lund University</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-101</td>
<td>Johan Genberg</td>
<td>Development of graphitization of μg-sized samples at Lund University</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-102</td>
<td>Matthieu Boudin</td>
<td>Application of different analytical techniques on pottery food crusts as a sample quality control for 14C dating</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-103</td>
<td>Jocelyn Turnbull</td>
<td>A new automated extraction system for 14C measurement in atmospheric CO_2</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-104</td>
<td>Michael Dee</td>
<td>The utility of Chromosorb® for monitoring contamination during 14C pretreatment</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-105</td>
<td>Mojmir Němec</td>
<td>Alternative methods for cellulose preparation for AMS measurement</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-106</td>
<td>Jean-Pascal Dumoulin</td>
<td>Improvements on CO_2 extraction and purification using automated system and first attempts for graphitizing few μg of carbon at LMC14 in Saclay, France</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-107</td>
<td>Alan Williams</td>
<td>Characterization and ongoing development of the ANSTO AMS radiocarbon small mass H_2/Fe graphitization lines</td>
<td>Simon Varley</td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-108</td>
<td>John Southon</td>
<td>A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-109</td>
<td>George Burr</td>
<td>Radiocarbon in clay minerals: a stepped-combustion approach</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-110</td>
<td>Robert Janovics</td>
<td>Development of an automatic sampling unit for measuring radiocarbon content of groundwater</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-111</td>
<td>Irka Hajdas</td>
<td>Closed-tubes preparation of graphite for high-precision AMS radiocarbon analysis</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-112</td>
<td>Ron Reimer</td>
<td>Does performance of zinc- and hydrogen-reduced graphite differ?</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-113</td>
<td>Hiroshi Nishimoto</td>
<td>Radiocarbon dating of waterlogged woods treated with a conservation material PEG: test of PEG removal by using dendro-dated archaeological wood remains</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-114</td>
<td>Peter Steier</td>
<td>Studies on the preparation of small 14C samples with an RGA and 13C-enriched material</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-115</td>
<td>Xuefeng Lu</td>
<td>A new line for preparation of graphite target at Xi’an AMS Center</td>
<td></td>
<td>Pretreatment</td>
</tr>
<tr>
<td>P-116</td>
<td>Bogemil Obelić</td>
<td>14C in biological samples and in the atmosphere in the vicinity of the Krško nuclear power plant, Slovenia</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-117</td>
<td>Pavel Povinec</td>
<td>Radiocarbon in the Bratislava air: forty years of investigations</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-118</td>
<td>David Fink</td>
<td>Growth rate of Antarctic mosses derived from bomb radiocarbon</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-119</td>
<td>Elisavet Georgiadou</td>
<td>Bomb-pulse dating of human material: modeling the influence of diet</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-120</td>
<td>Michel Fontigne</td>
<td>14C fluxes across the water-atmosphere interface in a eutrophic river during radioactive liquid releases from nuclear power plants</td>
<td>N. Tisnérat-Laborde</td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-121</td>
<td>Carmen Varlam</td>
<td>14C and tritium levels along Romanian Lower Danube River</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-122</td>
<td>Ivo Světlík</td>
<td>Radiocarbon monitoring in the Czech Republic and Hungary</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-123</td>
<td>Takafumi Aramaki</td>
<td>Effects of rainfall on carbon isotopes of POC in the Teshio River, northern Japan</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-124</td>
<td>Kazuki Hayashi</td>
<td>Radiocarbon concentration, carbon and oxygen stable isotope ratios in annual-ring cellulose of a pine tree from Nagoya, central Japan</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-125</td>
<td>Heather Graven</td>
<td>Trends and gradients in Δ^{14}C of atmospheric CO_2 observed by the Scripps global flask network</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>Poster #</td>
<td>Author</td>
<td>Title</td>
<td>Alt. Presenter</td>
<td>Session</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>P-126</td>
<td>Xiaomei Xu</td>
<td>$\Delta^{14}C$ of atmospheric CO$_2$ at Point Barrow, Alaska</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-127</td>
<td>Kazuho Horiuchi</td>
<td>Radiocarbon concentration in tree rings from a high emission area of volcanic carbon dioxide</td>
<td>Masao Uchida</td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-128</td>
<td>Daishi Handa</td>
<td>Radiocarbon based-source apportionment of PM$_{10}$ aerosols at Cape Hedo, Okinawa, Japan</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-129</td>
<td>Cecile Cathalot</td>
<td>Origin and spatial distribution of the organic carbon from the Rhone River in the Mediterranean: a multitracer approach ($\Delta^{14}C, \delta^{13}C$)</td>
<td>N. Tisnérat-Laborde</td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-130</td>
<td>Tom Higham</td>
<td>Radiocarbon dating and diet-derived offsets from geothermal sourced freshwater systems: a case study from the archaeological site of Klin Yar, Russian North Caucasus</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-131</td>
<td>Nolwenn Perron</td>
<td>Radiocarbon on-line analysis of atmospheric samples</td>
<td></td>
<td>Radionuclide Tracers</td>
</tr>
<tr>
<td>P-132</td>
<td>Sz. Harangi</td>
<td>Radiocarbon dating of the last volcanic eruption of the Ciomadul Volcano, southeast Carpathians</td>
<td>Mihaly Molnár</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-133</td>
<td>Sandor Gulyás</td>
<td>New radiocarbon dates from the Late Neolithic tell settlement of Hódmez vásárhely-Gorzsa, SE Hungary</td>
<td>Mihaly Molnár</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-134</td>
<td>Pal Sümegi</td>
<td>Radiocarbon-dated paleoenvironmental changes on a lake and peat sediment sequence from the central part of the Great Hungarian Plains (central Europe) during the last 25,000 years</td>
<td>Mihaly Molnár</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-135</td>
<td>Gheorghe Oaie</td>
<td>$\Delta^{14}C$ dating of Danube Delta sediments: Implications for the deltaic system evolution during the past 12 kyr</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-136</td>
<td>M Ghinassi</td>
<td>Radiocarbon dating of charcoals in laterally amalgamated fluvial channel bodies: the Late Holocene Abak Creek succession (Axum, northern Ethiopia)</td>
<td>Mariaelena Fedi</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-137</td>
<td>Yosuke Miyairi</td>
<td>High-precision determinations of eruption age of the Towada Ofudo (T-Of) tephra in northeast Japan</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-138</td>
<td>Irka Hajdas</td>
<td>Comparison of lake sediments age-depth model based on high-resolution ^{14}C datings with varve chronology</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-139</td>
<td>Takahiro Watanabe</td>
<td>Sources of plant residues in a sediment core (PY608W-PC) from Lake Pumoyum Co during the last 19 kyr</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-140</td>
<td>Takahiro Watanabe</td>
<td>^{14}C dating of Holocene soils from an island on Lake Pumoyum Co (southeastern Tibetan plateau)</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-141</td>
<td>Marcia Regina Calegari</td>
<td>Holocene phytolith and isotopic record from an umbric epipedon of an Oxisol (Salinas, Minas Gerais State, SE Brazil)</td>
<td>Luiz Pessenda</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-142</td>
<td>Luiz Pessenda</td>
<td>Vegetation and climate reconstruction in northeastern Brazil during the last 15,000 years inferred from carbon isotopes and charcoal soil distribution</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-143</td>
<td>Ayu Toyota</td>
<td>Comparison of soil carbon accumulation in conifer and broad-leaf forests using radiocarbon measurements</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-144</td>
<td>Miyuki Kondo</td>
<td>Sequential density fractionation and radiocarbon-based residence time for volcanic ash soil in a Japanese cool-temperate forest</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-145</td>
<td>Mark Garnett</td>
<td>Radiocarbon analysis of deep peat CO$_2$ using a passive sampling technique</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-146</td>
<td>Reka-Hajnalka Fülop</td>
<td>Quantifying site-specific Holocene soil erosion using depth-profiles of cosmogenic in situ ^{14}C and ^{10}Be</td>
<td>Philip Naysmith</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>Poster #</td>
<td>Author</td>
<td>Title</td>
<td>Alt. Presenter</td>
<td>Session</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>P-147</td>
<td>Susumu Tanabe</td>
<td>Reconstruction of shell-reworking process by using sediment-accumulation curve: a case study from the incised-valley fills under the Tokyo Lowland, central Japan</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-148</td>
<td>Hiroyuki Matsuzaki</td>
<td>Comparison of depth profiles of 129I and 14C concentration in the surface layer of soils collected from northeastern Japan</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-149</td>
<td>Kexin Liu</td>
<td>14C distribution and soil development in a typical hill slope</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-150</td>
<td>Jaroslav Kadlec</td>
<td>Study of changes of Morava River flood sediments in Strážnické Pomoraví area (Czech Republic) during the last millennium</td>
<td>Ivo Světlík</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-151</td>
<td>Soenke Szidat</td>
<td>Isolation of different soil components for radiocarbon dating of an alluvial fan</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-152</td>
<td>Mitsuru Okuno</td>
<td>AMS radiocarbon dating of the U-4, U-3, U-2 tephras in Ullengdo Volcano, South Korea</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-153</td>
<td>Fumiko Nara</td>
<td>Change in organic matter sources of Lake Baikal sediment core during the past 23,000 years revealed by stable carbon isotope ratios with 14C dating</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-154</td>
<td>Eugenia Mintz</td>
<td>14C dating of phytolith-rich layers: attempts, success, and difficulties</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-155</td>
<td>Kazumi Katsuno</td>
<td>The nature and ages of humic substances in Japanese volcanic ash soils at different stages of vegetation succession</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-156</td>
<td>Ning Wang</td>
<td>The improved application of carbon isotopes in forensic investigation</td>
<td>Chengde Shen</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-157</td>
<td>Ping Ding</td>
<td>Enrichment of bomb 14C in soil CO$_2$ from a subtropical forest, south China</td>
<td>Chengde Shen</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-158</td>
<td>Weixi Yi</td>
<td>Origin of the falling dust in Beijing, April 2006: another evidence for aeolian origin of loess</td>
<td>Chengde Shen</td>
<td>Soils/Sediments</td>
</tr>
<tr>
<td>P-159</td>
<td>Chengde Shen</td>
<td>14C chronostratigraphy and paleoclimate indications from buried ancient forest in Guangdong, south China</td>
<td></td>
<td>Soils/Sediments</td>
</tr>
</tbody>
</table>